

Review

* Chapter 1

Distinguish between population and sample, parameter and statistic Good sampling methods: simple random sample, collect in appropriate ways

* Chapter 2

Frequency distribution: summarizing data Graphs designed to help understand data Center, variation, distribution, outliers, changing characteristics over time

Copyright © 2010, 2007, 2004 Pearson Education. Inc. All Rights Reserved.

Preview

* Descriptive Statistics

In this chapter we'll learn to summarize or describe the important characteristics of a known set of data

* Inferential Statistics

In later chapters we'll learn to use sample data to make inferences or generalizations about a population

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
3.1-5

Part 1

Basics Concepts of Measures of Center

Notation

Σ denotes the sum of a set of values.
x is the variable usually used to represent the individual data values.
n represents the number of data values in a sample.
N represents the number of data values in a population.

Notation

\bar{x} is pronounced ' x-bar' and denotes the mean of a set of sample values

$$
\bar{x}=\frac{\sum x}{n}
$$

μ is pronounced 'mu' and denotes the mean of all values in a population

$$
\mu=\frac{\sum x}{N}
$$

Median

* Median
the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude
often denoted by $\tilde{\boldsymbol{x}}$ (pronounced 'x-tilde')
* is not affected by an extreme value - is a resistant measure of the center

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
3.1-14

Finding the Median

First sort the values (arrange them in order), the follow one of these

1. If the number of data values is odd, the median is the number located in the exact middle of the list.
2. If the number of data values is even, the median is found by computing the mean of the two middle numbers.

Mode

* Mode
the value that occurs with the greatest frequency
* Data set can have one, more than one, or no mode
Bimodal two data values occur with the same greatest frequency
Multimodal more than two data values occur with the same greatest frequency
No Mode no data value is repeated Mode is the only measure of central tendency that can be used with nominal data,

Mode - Examples \qquad
\qquad
a. $\begin{array}{lllll}5.40 & 1.10 & 0.42 \quad 0.73 & 0.48 & 1.10\end{array}$
b. $2727 \quad 27 \quad 5555 \quad 5588 \quad 8899$
C. $\begin{array}{llllllll}1 & 2 & 3 & 6 & 7 & 8 & 9 & 10\end{array}$
\checkmark Mode is 1.10 \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Midrange

* Sensitive to extremes
because it uses only the maximum and minimum values, so rarely used \qquad
* Redeeming Features
(1) very easy to compute
(2) reinforces that there are several ways to define the center
(3) Avoids confusion with median

Round-off Rule for Measures of Center

Carry one more decimal place than is present in the original set of values.

Critical Thinking

Think about whether the results are reasonable.

Think about the method used to collect the sample data.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Mean from a Frequency Distribution

Assume that all sample values in \qquad each class are equal to the class midpoint. \qquad
\qquad
\qquad
\qquad

Mean from a Frequency

 Distributionuse class midpoint of classes for variable \boldsymbol{x}

$$
\bar{x}=\frac{\Sigma(f \cdot x)}{\Sigma f}
$$

Weighted Mean

\qquad
When data values are assigned different weights, we can compute a weighted mean.

$$
\bar{x}=\frac{\Sigma(w \cdot x)}{\Sigma w}
$$

\qquad

Skewed Left or Right

* Skewed to the left
(also called negatively skewed) have a longer left tail, mean and median are to the left of the mode
* Skewed to the right
(also called positively skewed) have a longer right tail, mean and median are to the right of the mode
3.1-29

Shape of the Distribution

The mean and median cannot always be used to identify the \qquad shape of the distribution.

Part 1

Basics Concepts of Measures of Variation

3.1-35

Definition

The range of a set of data values is the difference between the maximum data value and the minimum data value.

It is very sensitive to extreme values; therefore not as useful as other measures of variation.

Round-Off Rule for Measures of Variation

When rounding the value of a measure of variation, carry one more
\qquad decimal place than is present in the original set of data.

Round only the final answer, not values in the middle of a calculation.

Definition

The standard deviation of a set of sample values, denoted by s, is a measure of variation of values about the mean.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample Standard Deviation Formula

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

